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ABSTRACT
Elasticity of compute and storage is crucial for analytical cloud
database systems. All cloud vendors provide disaggregated object
stores, which can be used as storage backend for analytical query
engines. Until recently, local storage was unavoidable to process
large tables e�ciently due to the bandwidth limitations of the net-
work infrastructure in public clouds. However, the gap between
remote network and local NVMe bandwidth is closing, making
cloud storage more attractive. This paper presents a blueprint for
performing e�cient analytics directly on cloud object stores. We
derive cost- and performance-optimal retrieval con�gurations for
cloud object stores with the �rst in-depth study of this foundational
service in the context of analytical query processing. For achieving
high retrieval performance, we present AnyBlob, a novel download
manager for query engines that optimizes throughput while mini-
mizing CPU usage. We discuss the integration of high-performance
data retrieval in query engines and demonstrate it by incorporating
AnyBlob in our database system Umbra. Our experiments show that
even without caching, Umbra with integrated AnyBlob achieves
similar performance to state-of-the-art cloud data warehouses that
cache data on local SSDs while improving resource elasticity.
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1 INTRODUCTION
Data warehousing moves to the cloud. Estimates show that the
revenue of cloud database systems has reached that of on-premise
systems in 2021 [1] – and by VLDB 2023, the cloud market share will
presumably be signi�cantly higher. A major part of this change is
the shift of data warehousing and analytical query processing to the
cloud. The main drivers behind that are elasticity and the �exibility
to provision storage and compute separately and on demand.
Cloud object stores. Cloud object stores such as AWS S3, IBM
COS, and GCP Storage enable separating compute from storage
in a cost-e�ective (e.g., ∼23$/TiB per month) way [13]. They also
provide strong durability guarantees (e.g., 11 9’s per year for S3 [4]),
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practically unlimited capacity, and scalable access bandwidth. These
properties make disaggregated cloud object storage a natural �t for
analytical database systems. In future data centers, database systems
may even run on hardware that separates memory and compute.
There, disaggregated storage is crucial to provide durability [83, 91].
High-bandwidth networks. Until recently, the major issue of
cloud object storage for analytics was the limited network band-
width between instances and storage. In 2018, AWS introduced in-
stances with 100 Gbit/s (≈12 GB/s) networking – resulting in a four-
fold increase in per-instance bandwidth [22, 26]. In contrast to In-
�niband, 100 Gbit/s Ethernet has not only become widely-available
but also a�ordable1. This e�ectively closes the gap between remote
network and local NVMe bandwidth2 and makes relying more on
cloud storage more attractive for bandwidth-dominated workloads.
Cloud storage analytics.Most cloud-native data warehouse sys-
tems, such as Snow�ake [33, 82], Databricks [25], and AWS Red-
shift [19], use cloud object storage as their ground-truth data source.
Although the bandwidth gap between local storage and network is
closing, most research focuses on caching to avoid fetching data
from remote storage [37, 46, 85, 89]. Early research investigates ob-
ject storage for transactional database systems but limits its focus
on OLTP [27]. Surprisingly, no empirical study for general-purpose
analytics (OLAP) on cloud object stores has been conducted.
Challenge 1: Achieving instance bandwidth. Because the la-
tency of each object request is high, saturating high-bandwidth net-
works requires many concurrently outstanding requests. Therefore,
a careful network integration into the DBMS is crucial to achieve
the complete bandwidth available on network-optimized instances.
Challenge 2: Network CPU overhead. In contrast to fetching
data from local disks, network retrieval has higher CPU overhead.
Query engines, however, also contend for computation resources to
simultaneously analyze large sets of data. Consequently, reducing
the CPU footprint of network retrieval is essential.
Challenge 3: Multi-cloud support.Many cloud database systems
are able to run in di�erent clouds – allowing the user to choose the
vendor of their liking. In contrast to the desire for multi-cloud sys-
tems, each cloud vendor provides its own networking library. Thus,
multiple libraries need to be integrated, which increases complexity.
Approach. In this paper, we present a blueprint for performing
e�cient analytics directly on data residing in disaggregated cloud
object stores. We studied the cloud object stores of di�erent vendors
to derive cost- and performance-optimal retrieval con�gurations.
To reduce resource utilization for network retrieval, we developed a
downloadmanager that is able to fetch data frommultiple cloud ven-
dors. We seamlessly integrate high-bandwidth object retrieval with
the database engine’s scan operator. Our DBMS Umbra, equipped
1Comparing the on-demand prices of c5n.18xlarge (100 Gbit/s) and c5.18xlarge (25
Gbit/s) while taking c5n’s larger DRAM into account (∼30% more DRAM), we �nd
that adding 100 Gbit/s networking increases cost by only 22%.
2Consider i3en.24xlarge, the AWS instance with the fastest local NVMe bandwidth. Its
local read bandwidth is 16 GB/s, while its full-duplex network bandwidth is 12 GB/s.
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Figure 1: Schematic architecture of AWS S3.

with our download manager and caching disabled, achieves similar
performance on a single instance as large con�gurations of state-of-
the-art cloud database systems that cache data on local SSDs. Our
fast and low overhead networking integration facilitates switch-
ing instances without performance cli�s, improving elasticity. As
switching comes without performance cli�s, our approach is able
to better utilize spot instances, available at huge discounts.
Contribution 1: Experimental study of cloud object stores. To
achieve high-bandwidth data processing, we �rst study the prop-
erties of cloud object stores. In Section 2, we explain the design of
disaggregated storage, discuss the cost structure, and then provide
detailed experiments on the latency and throughput of di�erent
object stores. We de�ne an optimal request size range that mini-
mizes cost while maximizing throughput. Our concurrency analysis
helps to schedule enough requests to meet the throughput goal (i.e.,
instance bandwidth). Our in-depth experimental study of this foun-
dational cloud service helps to exploit disaggregated storage for
analytical query processing.
Contribution 2: AnyBlob, a low overhead multi-cloud library.
With the insights gained from our characterization of object stores,
we developed AnyBlob, an open-source, multi-cloud download man-
ager for object stores that is optimized for large data analytics [36].
AnyBlob, described in Section 3, achieves the same throughput as
the libraries provided by the cloud vendors while reducing CPU re-
source consumption signi�cantly. CPU resource utilization is vital
to process data concurrently. In contrast to existing solutions, our
approach does not need to start new threads for parallel requests be-
cause it uses io_uring [21], which facilitates asynchronous system
calls. To saturate the network bandwidth, our analysis shows that
hundreds of requests have to be outstanding simultaneously. Our
solution helps to reduce thread scheduling overhead and allows
seamless integration into database query engines.
Contribution 3: Blueprint for retrieval integration. Tight inte-
gration of the download manager into the database engine enables
e�cient analytics on disaggregated storage. We present a blueprint
to incorporate AnyBlob into database engines in Section 4. By care-
fully designing the scan operator and developing an object retrieval
scheduler, we can seamlessly interleave the downloading of objects
with the analytical processing.

2 CLOUD STORAGE CHARACTERISTICS
Methodology. In order to design an e�cient analytics engine based
on cloud object storage, we need to understand its basic character-
istics. We start with an analysis on the performance characteristics
and cost of disaggregated object stores and compute instances. To
gain insights into the storage architecture, we perform various
micro-experiments on AWS S3 and two other cloud providers to
understand latency and throughput limitations. A study on AWS

Table 1: Cloud storage cost by cloud vendor for zone-
redundant replication (default; multiple AZs within region).

Cloud Provider
(cheapest region)

Storage
($ / TiB / month)

GET
($ / 1 M)

PUT
($ / 1 M)

AWS (us-east-2) [13] 23.55 0.40 5.00
GCP (us-east-1) [39] 20.48 0.40 5.00
IBM (us-east) [45] 23.55 0.42 5.20
Azure (East US 2) [60] 23.55 0.40 6.25
OCI (us-ashburn-1) [64] 26.11 0.34 0.34

shows that instances are able to achieve high network throughput
to S3 [80]. With the best practices in mind [10], we conduct this
in-depth experimental study that helps exploiting cloud storage for
analytical query processing. Unless otherwise speci�ed, we use our
AnyBlob library as the retrieval manager, presented in Section 3.

2.1 Object Storage Architecture
Overview. All major cloud vendors provide disaggregated storage
solutions such as AWS S3, Azure Blob, IBMCOS, OCI Object Storage,
and GCP Storage. Data is stored in immutable blocks called objects.
These objects are distributed and replicated across several storage
servers for availability and durability. After resolving the domain
name of the cloud object store, the user requests an object from a
storage server which then sends the data. All major cloud providers
use a similar API that transfers data via HTTP (TCP).
Architecture of S3. The architecture of S3 is depicted in Fig-
ure 1 [32]. AWS S3 de�nes pre�xes that are similar to unique �le
paths in operating systems. Objects are similar to �les and all levels
above objects are similar to directories. Data is stored in buckets
that resemble hard drive partitions in our analogy. According to
AWS, S3 partitions all pre�xes to scale to thousands of requests per
second [32]. A pre�x can range from covering a bucket down to
individual objects. With an update in 2020, S3 is now a strongly
consistent system [23]. Other providers were already strongly con-
sistent. S3 replicates the data to at least 3 di�erent availability zones
(AZs). A geographic region consists of AZs that are separated data
centers for increasing availability and durability [75].
Bandwidth limits. Data access performance is characterized by
the network connection of the instance, the network connection of
the cloud storage, and the network itself. At AWS, general-purpose
instances achieve 100 Gbit/s and more to the object stores [3, 5].

2.2 Object Storage Cost
Cost structure. All major cloud vendors structure their object
storage pricing similarly. They categorize expenses as storage cost,
data retrieval and data modi�cation cost (API cost), and inter-region
network transfer cost. Cloud providers operate object stores on the
level of a region (e.g., eu-central-1). When accessing data within
one region, only API costs are charged because intra-region tra�c
is free to the object store. On the other hand, AWS inter-region data
transfer, for example, from the US east to Europe costs 0.02$/GB.
Size-independent retrieval cost. Table 1 shows that the pricing of
cloud providers is similar for zone-redundant replication (default),
which provides high durability and optimal retrieval performance.
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Figure 2: First byte and total latency for di�erent requests
sizes on hot and cold objects (AWS, eu-central-1, c5n.large).

Surprisingly, retrieval cost in the same region depends only on the
number of requests sent to the cloud object store, and does not
depend on the object size. Downloading a 1 KiB object costs the
same as a 1 TiB object, as long as only one HTTP request is issued.
Cloud storage alternatives. Other storage solutions are not as
elastic as disaggregated storage and are often more expensive.
For example, AWS Elastic Block Storage (EBS) (gp2 SSD) costs
102.4$/TiB compared to 23.2$/TiB per month. HDD storage pricing
is comparable to S3, but bandwidth is very limited. Although EBS is
elastic in its size, it can only be attached to a single node. Instance-
based SSD storage is also expensive. For example, the price di�er-
ence between c5.18xlarge and c5d.18xlarge is 0.396$/h and yields
in 1.8 TB NVMe SSD. There, instance storage costs 158.4$/TB per
month, which is 7× more expensive. Another example for instance-
based storage is the largest HDD cluster instance d3en.12xlarge.
This instance features 24 HDDs with 14 TB storage each at a price
of 13.5$/TB per month. Although this seems cheaper initially, such
an instance cannot provide S3’s durability guarantees (11 9’s). The
parallelism of disaggregated storage enables higher throughput
than local storage devices, which we will discuss in Section 2.8.

Finding 1: Cloud object storage provides the best durability
guarantees while being the cheapest storage option.

2.3 Latency
Di�erent request sizes. Disaggregated storage incurs higher la-
tency than SSD-based storage solutions. We examine the latency
distribution for di�erent request sizes to understand storage latency.
We distinguish between total duration and latency until the �rst
byte is retrieved. The results of using only a single request at a
time are depicted in Figure 2. We di�erentiate between the �rst and
20th consecutive iteration to simulate hot accesses. Our experiment
shows that �rst byte latency often dominates the overall runtime
for small sizes. First byte and total duration are similar for small
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Figure 3: S3 bandwidth over 8 weeks (AWS, eu-central-1).
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Figure 4: Total latency distribution of di�erent object stores
over multiple runs on sparsely accessed data (12h interval).

request sizes. This highlights that round-trip latency limits the
overall throughput. For su�ciently large requests, bandwidth is the
limiting factor. From 8 to 16 MiB, we see minor improvements but
the duration already rises by ∼1.9× while object size doubles. In-
creasing the size from 16 to 32 MiB results in doubling the retrieval
duration. Thus, the bandwidth limit is reached, and further increas-
ing the size does not bene�t the retrieval performance. When data
is hot, �rst byte and total latency are generally reduced.
Noisy neighbors. Cloud-based storage solutions are shared be-
tween customers, resulting in less predictable latency. We continu-
ously retrieve a single object from a set of objects with one request
to analyze trends in access performance. We generate random 16
MiB objects since increasing the size does not lead to a lower la-
tency per byte. Figure 3 shows the bandwidth for accessing an
object (bytes divided by duration) over a period of 8 weeks. Object
bandwidth has a high variance ranging from ∼25 to 95 MiB/s, with
a considerable number of data points being at the maximum (15%).
The median performance stabilizes at 55-60MiB/s. Weekly patterns
in the data show that the bandwidth is in�uenced by the day of the
week. Especially at the weekends (�rst day of the week is Monday),
the performance is higher – most likely due to lower demand from
other customers. When we zoom into one week, clear daily patterns
are visible. The performance �uctuations between day and night
indicate variations in network utilization during di�erent times
of the day. Surprisingly, no outlier lies above the large cluster at
∼95 MiB/s even though millions of objects were downloaded. This
suggests that the per-request bandwidth is limited within S3 or that
server-side caching e�ects are intentionally not passed on to users.
Latency variations between cloud vendors. In addition to using
AWS, we also examine latency characteristics of two other cloud
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Figure 5: Throughput distribution of di�erent object stores
over multiple runs on sparsely accessed data (12h interval).

providers. The experiment, plotted in Figure 4, accesses randomly
generated 16MiB objects. After each run, the bucket is not accessed
until the next run. The interval between executions is (at least) 12
hours to reduce caching e�ects. AWS S3 has the highest overall
latency for individual objects. The other two providers have similar
average latencies, but Cloud Y has more variance. Latency between
di�erent executions is fairly stable across all cloud providers. As
mentioned, S3 has a minimum latency with no outliers below it,
which suggests a restricted per-request maximum bandwidth. In
contrast to AWS, outliers in the low latency spectrum indicate that
the other vendors do not hide caching e�ects.

2.4 Throughput
Importance of throughput. Aside from latency, we also show
insights on the throughput of accessing object stores. For analytics,
the most important factor is the combined throughput since OLAP
requires large amounts of data to be processed. Thus, the �rst byte
latency is less important for bandwidth-dominated workloads.
Cloud storage throughput similar to instance bandwidth.
Similar to our previous latency experiment, we access randomly
generated 16MiB objects. One request retrieves one complete ob-
ject. In this experiment, we maximize the throughput available on
each cloud provider with a single instance. We schedule up to 256
simultaneous requests using many threads to maximize throughput.
Further increasing requests did not lead to higher throughput. Sec-
tion 2.8 discusses the optimal number of requests. We use instances
that achieve up to 100 Gbit/s (or the cloud’s maximum bandwidth)
and have similar on-demand pricing. Figure 5 shows the through-
put experiment with (at least) 12 hours between di�erent runs to
reduce caching e�ects. Each throughput data point is calculated as
an aggregate of all downloaded objects over a 1-second window.
The results show that we achieve a median bandwidth of at least
75 Gbit/s for AWS. Most runs have a median bandwidth between
80 and 90 Gbit/s in eu-central-1, close to the maximum instance
bandwidth. At Cloud X, we observe a bandwidth limit of ∼40 Gbit/s
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Figure 8: Cost vs. throughput of di�erent request sizes (AWS,
eu-central-1, c5n.18xlarge).

and almost no �uctuations. Cloud Y achieves a median bandwidth
of 50 Gbit/s to its object store, but we notice higher variance.
Di�erent regions have slightly di�erent performance.
Throughput is similar for the two tested regions of AWS; how-
ever, one region performs slightly better. The di�erence between
the two regions does not vary much between iterations.
High bandwidth is achievable for cold objects. In Figure 6, we
investigate the throughput di�erences between the �rst and the
20th consecutive execution. The access frequency spike of the same
objects does not result in vastly di�erent execution times.
Small instances allow bursting. In the AWS instance speci�ca-
tions, the network bandwidth of smaller instances is often denoted
with an up-to bandwidth limit. Instances achieve the baseline band-
width (relative to the number of CPUs) in the steady state after
utilizing all burst credits [14]. Figure 7 shows that the instance falls
back to the baseline throughput after bursting for ∼45 min.

Finding 2: Object retrieval can reach network bandwidth.

2.5 Optimal Request Size
Request size implications. An important design decision is the
size of requests. Requests can either be full objects or byte ranges
within objects. Themost crucial factors are performance and request
cost. Since cloud providers charge by the number of requests, larger
requests result in lower cost for the same overall data size. On the
other hand, the size should be as small as possible so that small
tables also bene�t from parallel downloads. Our experiments in
Section 2.3 demonstrate that performance does not improve beyond
the bandwidth limit for a single request.
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Cost-throughput optimal requests. In Figure 8, we show the
cost of retrieving data from S3 with di�erent request sizes. The
achieved throughput with hundreds of simultaneous requests and
many threads is denoted above the bars. Each request size class
contains randomly generated objects. We distinguish between com-
pute instance cost (c5n.18xlarge) and storage retrieval cost. Storage
cost dominates the total cost for small objects. Computational cost
is the most signi�cant contributor to requests in the ∼10MiB range.
This applies to instances at on-demand prices and spot instances,
which come at a huge discount (we calculate with 60%). Because the
throughput plateaus in the same range of request sizes, we classify
request sizes of 8 - 16MiB as cost-throughput optimal for OLAP.

Finding 3: Sizes of 8 - 16MiB are cost-throughput optimal.

2.6 Encryption
CPU consumption of encryption. All experiments so far use an
unsecured connection to S3 (HTTP), but S3 also supports encrypted
connections through HTTPS. We measure the CPU overhead of
di�erent encryption strategies while reaching the same throughput
in Figure 9. HTTPS requires more than 2× CPU resources of HTTP,
but AES end-to-end encryption only increases CPU usage by ∼30%.
Encryption-at-rest superior to HTTPS. At AWS, all tra�c be-
tween regions and even all tra�c between AZs is automatically
encrypted by the network infrastructure. Thus, all tra�c leaving
an AWS physical location is automatically secured [8]. Within a
location, no other user is able to intercept tra�c between an EC2
instance and the S3 gateway due to the isolation of VPCs, making
HTTPS super�uous. However, encryption-at-rest is required to
ensure full data encryption outside the instance (e.g., at S3).

2.7 Tail Latency & Request Hedging
Hedging against slow responses.Missing or slow responses from
storage servers are a challenge for users of cloud object stores. In our
latency experiments, we see requests that have a considerable tail
latency. Some requests get lost without any notice. Tomitigate these
issues, cloud vendors suggest restarting unresponsive requests,
known as request hedging [10, 34]. For example, the typical 16 MiB
request duration is below 600ms for AWS. However, less than 5% of
objects are not downloaded after 600ms. Missing responses can also
be found by checking the �rst byte latency. Similarly to the duration,
less than 5% have a �rst byte latency above 200ms. Hedging these
requests does not introduce signi�cant cost overhead.

2.8 Model for Cloud Storage Retrieval
Concurrency analysis. During our analysis, we saw that the
bandwidth of individual requests is similar to accessing data on an
HDD. To saturate network bandwidth, many simultaneous requests
are required. Requests in the range of 8 - 16 MiB are cost-e�ective
for analytical workloads. We design a model to predict the number
of requests needed to reach a given throughput goal:

requests = throughput · baseLatency + size · dataLatency
size

For su�ciently large request sizes at S3, we calculate the median
base latency as ∼30ms and the median data latency as ∼20ms/MiB
The base latency is computed from the 1 KiB experiment in Figure 2,
the average latency of 16 MiB minus the base latency de�nes the
median data latency. Figure 4 shows that the median data latency of
Cloud X and Cloud Y is lower (12–15 ms/MiB). For S3, the optimal
request concurrency for saturating 100 Gibt/s instances is∼200–250.
Figure 10 evaluates themodel with the previous data latency and the
latency representing the 25th percentile (hot). The measurements
are between both models until the bandwidth limit is reached.
Storage medium. An access latency in the tens of ms and a per-
object bandwidth of ∼50MiB/s strongly suggest that cloud object
stores are based on HDDs. This implies that reading from S3 with
∼80 Gbit/s is accessing on the order of 100 HDDs simultaneously.

Finding 4: Saturating high-bandwidth networks requires
hundreds of outstanding requests to the cloud object store.

3 ANYBLOB
Uni�ed interface with smaller CPU footprint. Di�erent cloud
providers have their own download libraries with di�erent APIs and
performance characteristics [7, 40, 44, 61, 65]. To o�er a uni�ed in-
terface, we present a general-purpose and open-source object down-
load manager called AnyBlob [36]. In addition to transparently sup-
porting multiple clouds, our io_uring-based download manager
requires fewer CPU resources than the cloud-vendor-provided ones.
Resource usage is vital as our download threads run in parallel with
the query engine working on the retrieved data. Existing download
libraries start new threads for each parallel request. For example,
the S3 download manager of the AWS SDK executes one request
per thread using the open-source HTTP library curl. In contrast to
spinning up threads for individual requests, AnyBlob uses asynchro-
nous requests, which allows us to schedule fewer threads. Because
hundreds of requests must be outstanding simultaneously in high-
bandwidth networks, a one-to-one thread mapping would result
in thread oversubscription. This results in many context switches,
which negatively impacts performance and CPU utilization.

3.1 AnyBlob Design
Multiple requests per thread. AnyBlob uses io_uring to manage
multiple connections per thread asynchronously [31]. With this
model, the system does not have to oversubscribe threads which
would incur additional scheduling cost. In the following, we discuss
the three major components of AnyBlob. The components and their
relationship are shown in Figure 11.
io_uring - low-overhead system call interface. io_uring (avail-
able since Linux kernel 5.1) provides a generic kernel interface for
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storage and network tasks. It builds on two lock-free ring bu�ers,
the submission and completion queues, that are shared between
user and kernel space. The user inserts new submission queue en-
tries (SQE), such as receive (recv) and send operations, into the
submission queue. Inserting into the queue does not require any
syscalls. To notify the kernel of new entries in the submission queue,
the io_uring_enter system call processes the entries on the kernel
side in a non-blocking fashion until the request is transmitted to
the network or storage device. This device uses interrupt requests
(IRQs) to notify the kernel of �nished operations. The request is then
processed during the interrupt and placed on the completion queue.
To check if a request was successful, the user periodically peeks for
available completion queue entries (CQE). io_uring was found to
be highly e�cient for storage applications [35, 41, 52, 55, 68], but
is less studied for networking tasks [28]. Didona et al. suggest to
study io_uring for networking in more depth [35].
State-machine-basedmessages.AnyBlob uses a state machine for
each request. The message information (address, port, and raw data)
combined with a state machine is denoted as a Message Task. Op-
tionally, a receive bu�er can be attached that avoids additional data
copies since the kernel transfers data directly from the network
device to our desired location. Cloud object stores use HTTP mes-
sages to transfer data. We implement the di�erent phases of an
HTTP request within the state machine. On successfully complet-
ing a phase, we transition to the next phase until the object is fully
fetched. The state machine enables asynchronous and multiplexed
messages with a single thread. Several send and recv system calls
are required during transfer until the object is downloaded. After
each system call, we suspend the execution of this message until we
are noti�ed about the successful syscall. Afterward, we reevaluate
the state machine until a �nal state is reached.
Asynchronous system calls. Our asynchronous handling of send
and recv system calls in theMessage Task is facilitated by io_uring.
Instead of directly scheduling the system call and waiting for the
result, we insert the operation into the submission queue of the
uring. Each SQE has a user-de�ned member that allows passing
information to later identify its origin Message Task. System calls
are processed only when the submission queue is submitted to the
kernel ( 1 ). This submission process is non-blocking, allowing the

executing thread to work on other requests while the transfer is
handled by the network device. The uring is periodically checked
for available completion queue entries (CQE) ( 2 ). When a CQE
is available, a system call has been processed. With the retrieved
information, we can evaluate the next Message Task step.
Task-based send-receive scheduler. With io_uring-based sock-
ets and Message Tasks, we develop a task-based send-receive sched-
uler. The task scheduler uses one thread that continuously executes
1 – 3 as an event loop. This event loop coordinates the execution
of the steps of Message Tasks ( 3 ) and processes completion en-
tries ( 2 ). Furthermore, new object requests are scheduled as new
Message Tasks ( 4 ). To optimize single-threaded throughput, a task
scheduler works concurrently on multiple Message Tasks. Multiple
Message Tasks’ send and recv system calls can be batched before sub-
mitting the submission queue to reduce system call overhead ( 1 ).
In multi-threaded environments, it is bene�cial to reduce system
calls as parts of them are protected by kernel locks. When aMessage
Task is �nished, it invokes a callback to notify the requester.
Send-receive groups. Although a single task-based send-receive
scheduler has high throughput (multiple Gbit/s), it is not su�cient
to satisfy network-optimized instances. Thus, multiple schedulers
need to run simultaneously. For ease of use, a lock-free send-receive
task group manages requests for multiple send-receive schedulers.

3.2 Authentication & Security
Transparent authentication. Although all cloud providers use a
similar API to access objects, some details of signing requests and
the authentication are di�erent. AnyBlob implements operations to
upload and download objects frommultiple cloud storage providers.
We implement a custom signing process using the library openssl
to maintain high throughput with as few cores as possible [20].
For users of AnyBlob, it is transparent which provider is chosen, as
the interaction with the library remains unchanged. For AWS, we
support the automatic short-term key metadata service [11].
AnyBlob enables encryption-at-rest. AnyBlob supports the user
application to use encryption-at-rest by providing easy-to-use, in-
place, and fast encryption and decryption functions for AES. Fur-
ther, AnyBlob allows the usage of HTTPS for requests. However,



we discourage this in controlled environments, such as AWS EC2
connected to AWS S3, due to high CPU overhead. HTTPS is useful
for authentication if data is sent outside the controlled environment,
e.g., from your computer to S3. In contrast to the high overhead for
HTTPS, encryption-at-rest can be used with only moderate over-
head. As shown in Section 2.6, this client-side encryption provides
superior encryption against third parties, e.g., cloud providers.

3.3 Domain Name Resolver Strategies
Resolution overhead. In analytical scenarios, many requests are
scheduled to the cloud object storage. Section 2.1 highlights that
we can connect to di�erent server endpoints. Resolving a domain
name for each request adds considerable latency overhead due to
additional round trips. Thus, it is essential to cache endpoint IPs.
Throughput-based resolver. Our default resolver stores statistics
about requests to determine whether an endpoint is performing
well. We cache multiple endpoint IPs and schedule requests to
these cached IPs. If the throughput of an endpoint is worse than
the performance of the other endpoints, we replace this endpoint.
Thereby, we allow the load to balance across di�erent endpoints.
MTU-based resolver. We found that the path maximum trans-
mission unit (MTU) di�ers for S3 endpoints. In particular, the de-
fault MTU to hosts outside a VPC is typically 1500 bytes. Some S3
nodes, however, support Jumbo frames using an MTU of up to 9001
bytes [9]. Jumbo frames reduce CPU cost signi�cantly because the
per-packet kernel CPU overhead is amortized with larger packets.
MTU discovery. The S3 endpoints addressable with a higher path
MTU use 8400 bytes as packet size. Our AWS resolver attempts to
�nd hosts that provide good performance and use a higher path
MTU. We ping the IP with a payload (> 1500 bytes) and set the DNF
(do not fragment) �ag to determine if a higher pathMTU is available.

3.4 Performance Evaluation
Competitors. To demonstrate AnyBlob’s performance and CPU us-
age utilization, we experiment with di�erent settings on AWS. We
compare against two libraries provided by Amazon. They are both
part of the o�cial AWS C++ SDK (1.9.140). S3 is the traditional API
that uses the library curl internally to retrieve objects. Similar con-
cepts are applied by the download managers of other vendors’ SDKs.
S3Crt is a newer alternative S3 library released by AWS that uses
a custom C network implementation (C++ API). With AnyBlob’s
design, S3 Select can be implemented, but it would only support
few types (JSON, CSV, Parquet) and no client-side encryption [15].
Cost-throughput Pareto-optimal retrieval. Figure 12 shows
di�erent settings for each tested download manager. Note that we
plot performance and CPU utilization such that the optimal settings
lie in the top-left corner of the Pareto curve. Within one download
strategy, we highlight the points on their respective Pareto curve.
AnyBlob, with our throughput-based resolver, always dominates the
AWS-provided downloadmanagers.We achieve the samemaximum
throughput using only 0.7× the CPU resources of the best competi-
tor. Given a �xed CPU budget, we get up to 1.5× performance. Our
specialized AWS resolver achieves the same throughput but reduces
CPU usage by an additional 10%. We validated AnyBlob on recently
deployed Graviton instances (200 Gbit/s) [5] and observed greater
CPU reduction while retrieving objects with up to 180 Gbit/s.

Figure 12: Throughput and CPU usage Pareto curves for Any-
Blob, S3, and S3Crt (AWS, eu-central-1, c5n.18xlarge).

4 CLOUD STORAGE INTEGRATION
Query engine integration options. To unleash the full perfor-
mance potential of disaggregated cloud storage, we have to carefully
integrate the analytical query engine with the networking compo-
nents. A naive approach would let each worker thread download
its currently-needed data chunk synchronously. This way, each
worker thread would schedule at most one request at a time, but
the threads would be blockedmost of the time –waiting for network
I/O. A more common approach in database systems is the usage
of asynchronous I/O. Our cloud storage retrieval approach builds
upon this common I/O strategy. Database systems that use the
AWS S3 SDK [7] also leverage asynchronous retrieval from cloud
object storage. As discussed in Section 3, the AWS S3 SDK often
results in oversubscription, which has not only a negative impact
on performance but also other undesirable e�ects on database sys-
tems. For example, a huge download task with hundreds of threads
could make the DBMS unresponsive to newly arriving queries since
the DBMS has no control over the retrieval threads. Furthermore,
the mix of downloading and processing threads is hard to balance,
especially with this vast number of concurrently active threads.
Approach. In this section, we show how to integrate e�cient
object store retrieval into high-performance query engines. We
rely on AnyBlob and the empirical results presented in Section 2 to
saturate the available network bandwidth with low CPU resource
consumption. A key challenge is how to balance query processing
and downloading. Without enough retrieval threads, the network
bandwidth limit can not be reached. On the other hand, if we use too
few worker threads for computation-intensive queries, we lose the
in-memory computation performance of our DBMS. We, therefore,
propose a scheduling component to balance object store retrieval
and query processing, allowing us to schedule threads e�ectively
in terms of query performance and CPU usage. With this scheduler,
we then develop an e�cient table scan operator based on a cost-
e�ective columnar storage format.
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Figure 13: DBMS design overview for e�cient analytics with
the �ow of information between di�erent components.

4.1 Database Engine Design
Tasks and scheduling of worker threads. The overall design of
our cloud storage-optimized DBMS centers around the table scan
operator. Like most database systems, our system Umbra uses a
pool of worker threads to process queries in parallel. In our design,
worker threads do not only perform (i) regular query processing,
but can also (ii) prepare new object store requests or (iii) serve as
network threads. Our object scheduler, which we present in Sec-
tion 4.3, dynamically determines each worker’s job (i-iii) depending
on network bandwidth saturation and processing progress.
Task adaptivity. To overcome issues with long-running queries
that block resources, many database systems use tasks to process
queries. These tasks can either be suspended or run only for a small
amount of time. Both concepts lead to a query engine that is able
to adapt to changing workloads quickly. Regardless of the speci�c
task system, our asynchronous retrieval integration only requires
the mechanism to switch tasks of workers during query runtime.
Columnar format. The raw data is organized in a column-major
relation format chunked in immutable blocks of columns. The meta-
data of a block, e.g., column types and o�sets, are stored in the block
header. The database schema information is also stored on cloud
storage, which requires fetching at start-up.
Table metadata retrieval. In the following, we describe the �ow
of information during a table scan operation, illustrated in Figure 13.
In steps 1 and 2 , the scan operator �rst requests table metadata,
i.e., the list of blocks. Afterward, all relevant block metadata is
downloaded as a requirement to start the table scan’s data retrieval.
Worker thread scheduling. After initializing the table scan, we
dedicate multiple worker threads to this operation. Because par-
titioning worker threads into retrieval and processing threads is
di�cult and requires adaptations over the duration of the query,
we implement an object scheduler to solve this problem. Step 3
shows that each scanning thread asks the scheduler which job to
work on. If enough data is retrieved, the worker thread proceeds to
process data, as demonstrated in 4A . Otherwise, we dedicate the
thread to preparing blocks for retrieval. Since we only execute jobs
for a short time, this decision can be quickly adapted.
Download preparation. To saturate the network bandwidth, it is
important to continuously download with enough retrieval threads
and many outstanding requests. In Step 4B , the preparation worker
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Figure 14: Table scan example with 8 threads.

creates new requests that allow the retrieval threads to execute
their event loop without interruption. The object manager holds
metadata of tables, blocks, and their column chunk data. The column
chunk data is managed by our variable-sized bu�er manager. If the
data is not in memory, we create a new request and schedule it for
retrieval, shown in 5B . Finally, retrieval threads fetch the data.

4.2 Table Scan Operator
Scan design preliminaries. We carefully integrate AnyBlob into
our RDBMS Umbra, which compiles SQL to machine-code and
supports e�cient memory and bu�er management [38, 48, 63].
Umbra uses worker threads to parallelize operators, such as table
scans, and schedules as many worker threads as there are hardware
threads available on the instance. If there is only one active query,
all workers are used to process that speci�c query. Umbra’s tasks
consist of morsels which describe a small chunk of data of the
task [53]. Worker threads are assigned to tasks and process morsels
until the task is �nished or the thread is assigned to a di�erent task.
Morsel picking. After Umbra initializes the table scan, the worker
threads start calling the pickMorselmethod. This function assigns
chunks of the task’s data to worker threads. This is repeated after
each morsel completion as long as the thread continues to work
on this table scan task. The only di�erence in our approach is that
our workers do not only need to process data but also prepare new
blocks or retrieve blocks from storage servers. Our object scheduler,
which we explain in Section 4.3, decides the job of a worker thread
based on past processing and retrieval statistics. Note that similar
to our pickMorsel, every task-based system has a method that
determines the next task of a worker thread.
Worker jobs. If a thread is assigned to process data, a morsel is
picked from the currently active block in pickMorsel. In contrast
to the processing job, the other jobs (preparation and retrieval) do
not pick a morsel for scanning. Instead, these jobs start routines



Algorithm 1: Scheduler: Adaptivity Computation
1 retrieveSpeed = statistics[epoch].retrievedBytes / statistics[epoch].elapsed
2 processSpeed = (workerThreads - currentRetriever) *

statistics[epoch].processedBytes / statistics[epoch].processedTime
3 ratio = processSpeed / retrieveSpeed
4 requiredBandwidth = min(bandwidth, bandwidth * ratio)
5 requiredRetrieverThreads = min(maxRetrievers * ratio, maxRetrievers)

that are required to prepare or retrieve blocks. Regardless of the
job, all workers return to pickMorsel to get a new job assigned
after �nishing their current work.
Scan example overview. Figure 14 shows the full table scan oper-
ation with multiple (8) active threads working on di�erent jobs. In
the example table scan, 4 threads are dedicated to processing data,
3 for data retrieval, and 1 for preparing new blocks.
Processing job. After receiving a morsel for processing, the thread
scans and �lters the data according to the semantics of the table scan.
When all morsels of an active block (global or thread-local with
stealing) are taken, the thread picks the morsel from a new, already
retrieved block. In the example, each block is divided into 4 non-
overlapping morsels. Each thread works on its unique morsel range.
Preparation job. With the already retrieved table metadata,
threads prepare new blocks and register unknown blocks in the ob-
ject manager. If the data of all columns currently resides in physical
memory, the preparing thread marks the block as ready. Otherwise,
the preparing thread gets free space from the bu�er manager for
each un�xed column. With the block metadata (column type, o�set,
and size), HTTP messages for fetching columns from cloud storage
are created. After that, the block is queued for retrieval, where the
data is downloaded.
Retrieval job. In the example, three threads are scheduled to act as
AnyBlob retrieval threads. After �nishing the download of a block’s
column chunk, a callback is invoked and marks this column as
ready. Only if all columns have been retrieved, we mark the block as
ready. Note that di�erent retrieval threads may download column
chunks from the same block concurrently. The worker �nishes
when AnyBlob’s request queue gets empty. Because threads always
try to keep the queue at its maximum request length, unnecessary
retrieval threads will eventually encounter an empty queue and stop
downloading. These threads can then be reused to work on di�erent
jobs, such as processing or preparing new blocks. As long as enough
requests are in the queue, the threads constantly retrieve data.

4.3 Object Scheduler
Balance of retrieval and processing performance. The main
goal of the object scheduler is to strike a balance between pro-
cessing and retrieval performance. It assigns di�erent jobs to the
available worker threads to achieve this balance. If the retrieval
performance is lower than the scan performance, it increases the
amount of retrieval and preparation threads. On the other hand, re-
ducing the number of retrieval threads results in higher processing
throughput. Note that the retrieval performance is limited by the
network bandwidth, which the object scheduler considers.
Processing and retrieval estimations. The decision process re-
quires performance statistics during retrieval and processing. Each
processing thread tracks the execution time and the amount of

data processed. The aggregated data allow us to compute the mean
processing throughput per thread. For the network throughput, we
aggregate the overall retrieved bytes during our current time epoch.
Balancing retrieval threads and requests. Sections 2.8 and 3.4
analyze how many concurrent requests are needed to achieve our
throughput goal and the corresponding number of AnyBlob retriev-
ers. We track the number of threads used for retrieval and limit
it according to the instance bandwidth speci�cation. By counting
the number of outstanding requests (e.g., column chunks), we com-
pute an upper bound on the outstanding network bandwidth. An
outstanding request is a prepared HTTP request currently down-
loaded or awaiting retrieval. Because the number of threads and
the outstanding requests limit the network bandwidth, our object
scheduler always requires that the outstanding bandwidth is at
least as high as the maximum bandwidth possible according to the
current number of retrieval threads. Hence, it schedules enough
preparation jobs to match the number of retrieval threads.
Performance adaptivity. The scheduler computes the global ra-
tio between processing and retrieval to balance the retrieval and
processing performance. This ratio is used to adapt the number of
retrieval threads and the outstanding bandwidth. If processing is
slower, fewer blocks are prepared, and fewer retrieval threads are
scheduled. Some of the running retrieval threads will stop due to
fewer outstanding requests. These threads are then scheduled as
processing workers, increasing the global processing performance.
Algorithm 1 shows these adaptivity computations.
Overpreparation. Because it is undesirable to stall retrieval
threads due to unprepared columns, overpreparation is encouraged.
Our scheduler ensures that up to 2× of the required bandwidth is
outstanding and schedules preparation jobs accordingly.
Fast statistics aggregation. Lock-free atomic values for statistics
and global counters provide fast object scheduler decisions. For
every new scan request, we update the epoch to store representative
statistics of the current workload.

4.4 Relation & Storage Format
Columnar format. To leverage the cost-throughput optimal down-
load sizes, we require a column-major format that is chunked
into di�erent blocks. The database format is adapted from data
blocks [51]. For each column chunk, we store min and max values
in the metadata, enabling us to prune unnecessary blocks early.
Our blocks use low-overhead byte-level encodings, e.g., frame-of-
reference and dictionaries, to reduce storage requirements.
Tuple count in blocks. For cost-e�ective downloading, each col-
umn chunk of a block should have a desired size of 16 MiB. As query
processing usually works on a block granularity, all columns within
one block need to have the same number of tuples. However, this
results in imperfect column chunk sizes due to di�erent datatype
sizes and our byte-level encoding scheme. The range per tuple in an
encoded column is between 1 and 16 bytes, excluding the variable-
sized columns. Because of this wide byte spread, we need to balance
the sizes of the individual column chunks by optimizing the tuple
count. During block construction, we adaptively compute mean
tuple counts such that no encoded column falls below ∼2 MiB to
limit retrieval cost. Some �xed-sized and variable-sized columns
may exceed 16 MiB, which is undesirable for retrieval. To avoid



large di�erences in download latency between columns, Umbra
splits larger column chunks into multiple smaller range requests.
Zero user-space copies. Our implementation is tightly coupled
with the bu�er manager to reduce copies of data. The blocks of data
are aligned to the page sizes of the bu�er manager, but we reserve
space for the HTTP header and the chunk size of the recv system
call. By using the result data o�set, we avoid user-space data copies.
Transparent paging. We extend the bu�er manager with anony-
mous pages not backed by �les to take advantage of the paging
and in-memory bu�er management features. If a new retrieval on
the same page is necessary, we check if the page is still available. If
not, we download the data again. With this uni�ed and transparent
bu�er manager, we avoid retrieval and bu�er space trade-o�s.
Structure of metadata. Figure 15 shows the object structure in
the cloud object storage. Within the database pre�x, we store the
schema information that contains all the necessary information
to initialize the database. Each table has its own subpre�x, which
contains a list of headers, headers, and data blocks. Because header
objects are also cost-throughput optimized, we store fewer header
objects than blocks, as each header object contains multiple block
headers. The data is organized for append-only storage, which
mimics most analytical engines. Because objects can be replaced
atomically in cloud storage, updating the list of headers creates con-
sistent data snapshots. Versioning the metadata is common in cloud
DBMSs to provide consistent views of the data. Apache Iceberg [17]
and Data Lake [18] use an analogous technique. Iceberg’s manifest
�les are similar to our list of headers and header objects [43].
Scan optimizations. Our implementation checks a header’s min/-
max values to avoid unnecessary downloads. A block is only sched-
uled for retrieval if all table scan restrictions match the min/max
values within the block metadata. Before scanning the encoded data,
the processing thread has to decode the data. We repeatably �ll a
small chunk with decoded data and process it. Umbra can either
decode the data entirely or only decode tuples that satisfy the re-
strictions. Both approaches leverage vectorized SIMD instructions.

4.5 Encryption & Compression
Size reduction with strong compression. Although the band-
width to external storage is high, modern engines might still wait
on data arrival. With the encoding schemes presented in Section 4.4,
the size of the columns is already reduced. Additional stronger com-
pression allows for reducing them further. We use bit-packing for
integer-encoded columns and apply LZ4 on the remaining ones.
Security due to encryption-at-rest. As already described in Sec-
tion 2.6, encryption-at-rest does not only secure the tra�c in transit
but also stores the data inaccessible to third-parties. Before upload-
ing a column, we use AnyBlob to encrypt the individual columns of
a block. Although encryption with AES has a slight performance
penalty, most real-world users prefer the gained security bene�ts.

5 EXPERIMENTAL EVALUATION
Setup.We extended our high-performance database system Umbra
to support e�cient analytics on disaggregated cloud object stores.
All experiments are conducted at AWS in region eu-central-1. Unless
otherwise noted, we use a single c5n.18xlarge (72 vCPUs / 36 cores,
192 GiB main memory, 100 Gbit/s network) instance with Ubuntu.

schema lineitem
H #1HList HList… … H #1H #m

orders

data_1 data_2 data_n

Figure 15: Object structure overview on S3 for TPC-H.

5.1 Data Retrieval Performance
Comparison with in-memory cached data. In order to analyze
the retrieval capabilities of Umbra, we perform self-tests against a
fully in-memory version of Umbra on the popular TPC-H bench-
mark. Although storing only the current query data is su�cient,
we are restricted to scale factor 500 to �t all query data into the
memory of our in-memory version. Table 2 shows the performance
of the remote-only (no caching of bu�er pages) and the in-memory
version of our database, the end-to-end bandwidth, and the cost of
the remote-only version. As mentioned, our remote-only version
ignores bu�ered pages and retrieves all required data from remote
storage. The bandwidth is computed by a sum of the retrieved data
divided by the total query runtime, which serves as a lower bound.
Processing at instance bandwidth. Queries can be separated
into retrieval-heavy and computation-heavy ones. The bandwidth
is a good indicator for categorizing the queries. For example,
Queries 1, 6, and 19 are the strongest representatives of the retrieval-
heavy group. Umbra achieves an end-to-end bandwidth of up to
78 Gbit/s which is close to the limit. However, the factor between
the in-memory and the remote execution time is large because
Umbra could process more tuples than the network can provide.
No overhead for computationally-intensive queries. On the
other hand, we observe only minor di�erences between the in-
memory and remote-only versions for computationally intensive
queries. For example, Queries 9 and 18 have a factor of ≤ 1.3×.
Because the DBMS is at its processing limit due to intensive joins
and aggregations, fetching of blocks is not very noticeable.
E�ective scheduling. This shows the e�ectiveness of our sched-
uling algorithm. If the query is retrieval intensive, we saturate
network bandwidth while continuing to process data. On the other
hand, if Umbra is limited by computation, our scheduler does not
waste CPU resources on idle downloading processes.
Spot instances. In the remote Umbra scenario, spot instances can
be leveraged without any performance cli�s. However, additional
safeguards need to be in place due to early instance termination.
Queries a�ected by termination might require restarts, and commit
persistence must be guaranteed.

5.2 Retrieval Manager Study
Di�erent retrieval managers on chokepoint queries. To
demonstrate the properties of our design and validate our Any-
Blob results, we test di�erent retrieval options within Umbra. We
test our DBMS on EBS (gp3, no page cache) and on cloud object
storage (no object cache). For retrieving data from S3, we imple-
mented three di�erent strategies. First, we use the worker threads to
download their currently required object from remote storage with
the AWS S3 library. The second strategy uses our asynchronous
retrieval integration design, shown in Section 4, and combines it
asynchronously with the AWS library. The last con�guration lever-
ages our integration andAnyBlob (Sections 3 and 4). To demonstrate



Table 2: In-memory and remote-only Umbra comparison demonstrates small cloud retrieval overhead (SF 500, c5n.18xlarge).

Query GM Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

In-Memory [s] 2.03 1.14 0.38 2.93 2.08 3.35 0.52 2.73 3.38 10.61 4.27 0.25 1.99 9.50 1.35 0.99 1.81 1.36 18.91 0.74 1.45 6.04 1.75
Remote [s] 4.94 3.52 1.97 5.87 4.18 5.77 2.47 6.41 6.86 13.34 7.68 1.14 4.74 12.47 4.15 3.97 2.42 4.63 22.20 3.82 5.06 12.24 2.54
Factor 2.42 3.08 5.16 2.01 2.01 1.72 4.78 2.35 2.03 1.26 1.80 4.58 2.39 1.31 3.07 4.01 1.34 3.41 1.17 5.15 3.50 2.03 1.45
Gbit/s 49.80 75.00 46.00 55.76 55.95 65.20 77.73 64.43 69.40 40.67 52.42 40.73 62.01 30.86 64.63 67.35 14.13 73.65 15.41 76.87 66.34 65.35 23.20
Cost S3 [¢] 0.15 0.29 0.04 0.21 0.15 0.20 0.17 0.23 0.24 0.31 0.27 0.02 0.23 0.28 0.17 0.17 0.02 0.21 0.22 0.25 0.21 0.43 0.03
Cost EC2 [¢] 0.53 0.38 0.21 0.63 0.45 0.62 0.27 0.69 0.74 1.44 0.83 0.12 0.51 1.34 0.45 0.43 0.26 0.50 2.39 0.41 0.55 1.32 0.27
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Figure 16: Internal comparison of Umbra on EBS, and on S3,
+ ASync (Sec. 4), + AnyBlob (Sec. 3) (SF 1000, 2 instance types).

our cloud storage performance, all remaining experiments force
Umbra to ignore columns already available in the bu�er manager.
Umbra always fetches these columns from remote storage.
Higher throughput while reducing CPU usage. In Figure 16,
we test all TPC-H queries on two di�erent machine types, both sup-
porting 100 Gbit/s networking. EBS has the worst throughput due
to the bandwidth limit of 1 GB/s. Asynchronous retrieval of more
requests than cores is crucial for performance. By simply swapping
the retrieval library from the asynchronous AWS SDK to AnyBlob,
Umbra achieves up to a factor of 1.2× better geometric mean per-
formance and an improvement of up to 40% on computationally
expensive queries. Additionally, AnyBlob reduces the mean CPU
usage by up to 25%. Recent trends indicate that the networking
bandwidth increases faster than the number of CPU cores, making
the resource usage of networking essential [5].
Retrieval requires signi�cant CPU resources. Figure 17 breaks
the query resource CPU utilization down into �ne-grained tasks,
such as network I/O, memory and bu�er management, and process-
ing (similar to [66]). We used perf to trace the resource utilization
of di�erent functions and aggregate the results. Umbra achieves an
average CPU utilization of ∼75% with asynchronous networking.
Networking uses a large share of CPU time that accounts for up to
25% of the total utilization, signi�cantly reduced by AnyBlob.

5.3 Scaling Properties
Thread scaling on chokepoint queries. Since our approach is
highly elastic, it is very interesting to see how Umbra scales on a
varying number of cores and di�erent instances. Figure 18 shows
two chokepoint queries, which we already identi�ed in Section 5.1.
The results are measured on the same instance, but we arti�cially
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Figure 17: CPU usage traces for di�erent networking imple-
mentations collected with Linux perf (SF 1000, c5n.18xlarge).

reduce the amount of parallelism within our DBMS (number of
worker threads). We contrast to the aforementioned in-memory
version of our system. For retrieval-heavy queries (e.g., Query 1),
we can see a plateau if enough cores are available to utilize the
network completely. For the in-memory version, we measure a
linear increase in performance until the hyper-threading boundary
is reached. The performance of the computation-heavy queries
(Query 9) increases as we add more cores. The remote-only Umbra
version has almost the same throughput as the in-memory version.
Instance scaling. To demonstrate our scalability on di�erent in-
stances, we use smaller versions of the c5n.18xlarge. The c5n.9xlarge
has a maximum bandwidth of 50 Gbit/s and 36 vCPUs; the
c5n.4xlarge has 16 vCPUs and 25 Gbit/s bandwidth. The additional
resources of larger instances improve the query runtime. Because
our approach retains performance without warm caches, we can
switch to larger instances as the workload increases.

5.4 End-To-End Study with Compression & AES
Workload & competitors. In this experiment, we compare the
end-to-end performance on the TPC-H benchmark. To mimic a
realistic OLAP scenario analyzing large amounts of data, we test
scale factors (SF) of 100 (∼100 GiB) and 1,000 (∼1 TiB of data). Since
we optimize the retrieval properties, Umbra does not cache any
data to showcase our retrieval integration. We compare against
Spark on a single c5n.18xlarge instance and a large warehouse of
Snow�ake. In 2019, Snow�ake used c5d.2xlarge instances for xsmall
warehouses, which was reported by a Snow�ake error log [70].
Assuming this instance type for xsmall, a large warehouse would
use an instance or cluster similar to our instance but with local SSDs
(e.g., c5d.18xlarge or 8 × c5d.2xlarge). For Snow�ake, we measure
the throughput with warm cache (multiple TPC-H runs) and on
another large con�guration that is shut down after each query
execution to enforce remote retrieval.
Fast processing from cloud storage. Figure 20 shows the per-
formance results of di�erent systems. As discussed in Section 4.5,
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Figure 19: Scalability on dif-
ferent instances.
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Figure 20: End-to-end system comparison on SF 100 and 1000.

Umbra is able to encrypt data automatically and implements strong
compression. Compression improves performance, but encryption
has a slight overhead. In a real-world scenario, we recommend using
both settings for higher security without performance degradation.
Although Umbra always retrieves the data from cloud storage, the
performance is similar to Snow�ake, which uses data caching (e.g.,
local SSDs). As mentioned earlier, the actual hardware con�gura-
tion of Snow�ake is unknown. For example, the runtime of Query 6
suggests that the instance has higher disk bandwidth than both
mentioned instance settings. Clearly, these end-to-end results are
in�uenced by the database, its execution model, and the hardware.

6 RELATEDWORK
Cloud DBMS.With the dominance of the cloud for scalable solu-
tions, many software-as-a-service database management systems
emerged. Often specialized systems for either OLTP [16, 29, 30, 81]
or OLAP [2, 25, 33, 58, 59, 67, 79, 87] were developed to copewith the
new challenges in the cloud era [56]. Redshift [19] leverages Aqua, a
computational caching layer, una�ected by resizing nodes [6]. Until
recently, caching was unavoidable even for analytics dominated
by the bandwidth. However, the gap between network and NVMe
bandwidth is closing, making cloud storage more attractive. AWS
Athena, based on Presto [73], works directly on remote data. An
experimental study contrasts the architecture of these systems [77].
Processing in the cloud. Brantner et al. [27] discuss challenges
and opportunities of S3 for OLTP workloads. In 2010, an experi-
mental study provided insights into the computation power of EC2
instances; in particular, it studies the CPU resources, memory, and

disk operations [72]. Our experimental study on cloud storage pro-
vides an in-depth analysis that provides all details for fast analytics
on cloud storage. Leis and Kuschewski present a model for cost-
optimal instance selection [54]. Although systems such as Hive and
Spark can be self-hosted [78, 86], managed Hadoop is common [71].
Spot instances. Because spot instances come with huge discounts,
mitigating the termination risk and hopping between instances was
researched [74, 76]. Our approach is a perfect �t for spot hopping
since caching is not needed for good performance. Although our ex-
periments run faster than the termination delay of AWS (2 min) [12],
a migration to another instance can retain query state [84].
Serverless computing. Serverless functions are another short-
term service, which allow users to deploy resources only for the
duration of a request. Since a serverless function has little memory,
compute resources, and a time limit [42], many parallel function
invocations are required to execute a single query. Starling [69] and
Lambada [62] propose to run analytics on serverless functions. Al-
though Lambada and Starling provide a small study on S3 in server-
less environments, the characteristics are very di�erent as these
functions only have limited threads and networking (300 MiB/s),
which does not require a careful retrieval design such as AnyBlob.
Cloud storage for DBMS. Cloud object stores attract attention
as data warehouses due to their low costs. Two prominent storage
solutions are Apache Iceberg and Data Lake [17, 18]. Both systems
use metadata stored on the cloud object stores to provide consistent
snapshots. As our storage structure is similar, our fast processing on
remote data can be adapted to these storage backends. Ephemeral
storage systems, such as Pocket [49], and caching for cloud stor-
age [37, 46, 85, 89] sparked a wide variety of research. Caching
solutions extend from using semantic caching on a local node [37]
to leveraging spot instances as caching and o�oading layer [89].
Memory disaggregation. Similar to disaggregating storage, future
data centers may separate CPU from memory to improve resource
�exibility. Most research �nds that disaggregated memory is or-
thogonal to the current storage-separated design [50, 83, 90, 91].
Networking and kernel APIs. Following recent trends, future
data centers will be equipped with fast Ethernet connections
reaching Tbit/s [28]. OS and kernel research presents approaches
to integrate these high-bandwidth network devices with low la-
tency [28, 88]. RDMA is already explored in DBMS for fast networks
with low latency [24, 47, 57, 92]. A kernel storage API study found
io_uring, used in AnyBlob, to be promising [35]. Especially for fast
NVMe SSDs, it is already used widespread [35, 41, 52, 55, 68].

7 CONCLUSION
This paper discusses the e�cient and cost-e�ective usage of cloud
object storage for analytics. Our �rst contribution is a detailed
analysis on the characteristics of cloud object stores. With these
insights, we developed AnyBlob, a modern object storage down-
load manager based on io_uring. AnyBlob requires fewer CPU
resources to achieve the same or higher throughput compared to
libraries provided by cloud vendors. Finally, we demonstrated a
blueprint to utilize e�cient analytics on disaggregated object stores
in DBMSs. Our results show that even with disabled caching, Umbra
with AnyBlob achieves performance similar to large con�gurations
of state-of-the-art cloud database systems that cache data locally.
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